------------------------------------------------------------------------
-- Natural numbers
------------------------------------------------------------------------

module Data.Nat where

open import Data.Function
open import Data.Sum
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl)

infixl 7 _*_ _⊓_
infixl 6 _∸_ _⊔_

------------------------------------------------------------------------
-- The types

data  : Set where
  zero : 
  suc  : (n : )  

{-# BUILTIN NATURAL     #-}
{-# BUILTIN ZERO    zero #-}
{-# BUILTIN SUC     suc  #-}

infix 4 _≤_ _<_ _≥_ _>_

data _≤_ : Rel  where
  z≤n :  {n}                  zero   n
  s≤s :  {m n} (m≤n : m  n)  suc m  suc n

_<_ : Rel 
m < n = suc m  n

_≥_ : Rel 
m  n = n  m

_>_ : Rel 
m > n = n < m

-- The following, alternative definition of _≤_ is more suitable for
-- well-founded induction (see Induction.Nat).

infix 4 _≤′_ _<′_ _≥′_ _>′_

data _≤′_ : Rel  where
  ≤′-refl :  {n}                    n ≤′ n
  ≤′-step :  {m n} (m≤′n : m ≤′ n)  m ≤′ suc n

_<′_ : Rel 
m <′ n = suc m ≤′ n

_≥′_ : Rel 
m ≥′ n = n ≤′ m

_>′_ : Rel 
m >′ n = n <′ m

------------------------------------------------------------------------
-- A generalisation of the arithmetic operations

fold : {a : Set}  a  (a  a)    a
fold z s zero    = z
fold z s (suc n) = s (fold z s n)

module GeneralisedArithmetic {a : Set} (0# : a) (1+ : a  a) where

  add :   a  a
  add n z = fold z 1+ n

  mul : (+ : a  a  a)  (  a  a)
  mul _+_ n x = fold 0#  s  x + s) n

------------------------------------------------------------------------
-- Arithmetic

pred :   
pred zero    = zero
pred (suc n) = n

infixl 6 _+_ _+⋎_

_+_ :     
zero  + n = n
suc m + n = suc (m + n)

-- Argument-swapping addition. Used by Data.Vec._⋎_.

_+⋎_ :     
zero  +⋎ n = n
suc m +⋎ n = suc (n +⋎ m)

{-# BUILTIN NATPLUS _+_ #-}

_∸_ :     
m      zero  = m
zero   suc n = zero
suc m  suc n = m  n

{-# BUILTIN NATMINUS _∸_ #-}

_*_ :     
zero  * n = zero
suc m * n = n + m * n

{-# BUILTIN NATTIMES _*_ #-}

-- Max.

_⊔_ :     
zero   n     = n
suc m  zero  = suc m
suc m  suc n = suc (m  n)

-- Min.

_⊓_ :     
zero   n     = zero
suc m  zero  = zero
suc m  suc n = suc (m  n)

-- Division by 2, rounded downwards.

⌊_/2⌋ :   
 0 /2⌋           = 0
 1 /2⌋           = 0
 suc (suc n) /2⌋ = suc  n /2⌋

-- Division by 2, rounded upwards.

⌈_/2⌉ :   
 n /2⌉ =  suc n /2⌋

------------------------------------------------------------------------
-- Queries

_≟_ : Decidable {A = } _≡_
zero   zero   = yes refl
suc m  suc n  with m  n
suc m  suc .m | yes refl = yes refl
suc m  suc n  | no prf   = no (prf  PropEq.cong pred)
zero   suc n  = no λ()
suc m  zero   = no λ()

≤-pred :  {m n}  suc m  suc n  m  n
≤-pred (s≤s m≤n) = m≤n

_≤?_ : Decidable _≤_
zero  ≤? _     = yes z≤n
suc m ≤? zero  = no λ()
suc m ≤? suc n with m ≤? n
...            | yes m≤n = yes (s≤s m≤n)
...            | no  m≰n = no  (m≰n  ≤-pred)

-- A comparison view. Taken from "View from the left"
-- (McBride/McKinna); details may differ.

data Ordering : Rel  where
  less    :  m k  Ordering m (suc (m + k))
  equal   :  m    Ordering m m
  greater :  m k  Ordering (suc (m + k)) m

compare :  m n  Ordering m n
compare zero    zero    = equal   zero
compare (suc m) zero    = greater zero m
compare zero    (suc n) = less    zero n
compare (suc m) (suc n) with compare m n
compare (suc .m)           (suc .(suc m + k)) | less    m k = less    (suc m) k
compare (suc .m)           (suc .m)           | equal   m   = equal   (suc m)
compare (suc .(suc m + k)) (suc .m)           | greater m k = greater (suc m) k

------------------------------------------------------------------------
-- Some properties

decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
  { Carrier         = 
  ; _≈_             = _≡_
  ; _≤_             = _≤_
  ; isDecTotalOrder = record
      { isTotalOrder = record
          { isPartialOrder = record
              { isPreorder = record
                  { isEquivalence = PropEq.isEquivalence
                  ; reflexive     = refl′
                  ; trans         = trans
                  ; ∼-resp-≈      = PropEq.resp₂ _≤_
                  }
              ; antisym  = antisym
              }
          ; total = total
          }
      ; _≟_  = _≟_
      ; _≤?_ = _≤?_
      }
  }
  where
  refl′ : _≡_  _≤_
  refl′ {zero}  refl = z≤n
  refl′ {suc m} refl = s≤s (refl′ refl)

  antisym : Antisymmetric _≡_ _≤_
  antisym z≤n       z≤n       = refl
  antisym (s≤s m≤n) (s≤s n≤m) with antisym m≤n n≤m
  ...                         | refl = refl

  trans : Transitive _≤_
  trans z≤n       _         = z≤n
  trans (s≤s m≤n) (s≤s n≤o) = s≤s (trans m≤n n≤o)

  total : Total _≤_
  total zero    _       = inj₁ z≤n
  total _       zero    = inj₂ z≤n
  total (suc m) (suc n) with total m n
  ...                   | inj₁ m≤n = inj₁ (s≤s m≤n)
  ...                   | inj₂ n≤m = inj₂ (s≤s n≤m)

import Relation.Binary.PartialOrderReasoning as POR
module ≤-Reasoning = POR (DecTotalOrder.poset decTotalOrder)
  renaming (_≈⟨_⟩_ to _≡⟨_⟩_)