{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.Consequences where
open import Relation.Binary.Core hiding (refl)
open import Relation.Nullary.Core
open import Relation.Binary.PropositionalEquality.Core
open import Data.Function
open import Data.Sum
open import Data.Product
open import Data.Empty
open import Relation.Binary.Consequences.Core public
trans∧irr⟶asym :
∀ {a ℓ₁ ℓ₂} {A : Set a} → {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
Reflexive ≈ →
Transitive < → Irreflexive ≈ < → Asymmetric <
trans∧irr⟶asym refl trans irrefl = λ x<y y<x →
irrefl refl (trans x<y y<x)
irr∧antisym⟶asym :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
Irreflexive ≈ < → Antisymmetric ≈ < → Asymmetric <
irr∧antisym⟶asym irrefl antisym = λ x<y y<x →
irrefl (antisym x<y y<x) x<y
asym⟶antisym :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
Asymmetric < → Antisymmetric ≈ <
asym⟶antisym asym x<y y<x = ⊥-elim (asym x<y y<x)
asym⟶irr :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
< Respects₂ ≈ → Symmetric ≈ →
Asymmetric < → Irreflexive ≈ <
asym⟶irr {< = _<_} resp sym asym {x} {y} x≈y x<y = asym x<y y<x
where
y<y : y < y
y<y = proj₂ resp x≈y x<y
y<x : y < x
y<x = proj₁ resp (sym x≈y) y<y
total⟶refl :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {∼ : REL A ℓ₂} →
∼ Respects₂ ≈ → Symmetric ≈ →
Total ∼ → ≈ ⇒ ∼
total⟶refl {≈ = ≈} {∼ = ∼} resp sym total = refl
where
refl : ≈ ⇒ ∼
refl {x} {y} x≈y with total x y
... | inj₁ x∼y = x∼y
... | inj₂ y∼x =
proj₁ resp x≈y (proj₂ resp (sym x≈y) y∼x)
total+dec⟶dec :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {≤ : REL A ℓ₂} →
≈ ⇒ ≤ → Antisymmetric ≈ ≤ →
Total ≤ → Decidable ≈ → Decidable ≤
total+dec⟶dec {≈ = ≈} {≤ = ≤} refl antisym total _≟_ = dec
where
dec : Decidable ≤
dec x y with total x y
... | inj₁ x≤y = yes x≤y
... | inj₂ y≤x with x ≟ y
... | yes x≈y = yes (refl x≈y)
... | no ¬x≈y = no (λ x≤y → ¬x≈y (antisym x≤y y≤x))
tri⟶asym :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
Trichotomous ≈ < → Asymmetric <
tri⟶asym tri {x} {y} x<y x>y with tri x y
... | tri< _ _ x≯y = x≯y x>y
... | tri≈ _ _ x≯y = x≯y x>y
... | tri> x≮y _ _ = x≮y x<y
tri⟶irr :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
< Respects₂ ≈ → Symmetric ≈ →
Trichotomous ≈ < → Irreflexive ≈ <
tri⟶irr resp sym tri = asym⟶irr resp sym (tri⟶asym tri)
tri⟶dec≈ :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
Trichotomous ≈ < → Decidable ≈
tri⟶dec≈ compare x y with compare x y
... | tri< _ x≉y _ = no x≉y
... | tri≈ _ x≈y _ = yes x≈y
... | tri> _ x≉y _ = no x≉y
tri⟶dec< :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : REL A ℓ₁} {< : REL A ℓ₂} →
Trichotomous ≈ < → Decidable <
tri⟶dec< compare x y with compare x y
... | tri< x<y _ _ = yes x<y
... | tri≈ x≮y _ _ = no x≮y
... | tri> x≮y _ _ = no x≮y
map-NonEmpty : ∀ {i p q} {I : Set i} {P : REL I p} {Q : REL I q} →
P ⇒ Q → NonEmpty P → NonEmpty Q
map-NonEmpty f x = nonEmpty (f (NonEmpty.proof x))